Using Data – Student Activity Science uses data to accurately answer questions about the world. Good data must be measured accurately, assessed precisely, and be reported in useful units. ## **Measurements and Units** A measurement is a number used to help describe something. A unit is a standard quantity of measurement, defined and agreed upon by scientists. For example, from 1889 until the mid-20th century, a metre was defined by a physical rod of platinum kept in Paris. Today, a metre is defined by how far light travels in a certain fraction of a second. Using the right unit of measurement for the task is very helpful – you wouldn't enjoy trying to measure the distance of your cross-country road trip in millimetres! What instruments would we use to measure the following: Temperature? What would be the units of measurement? The length of an arm? What would be the units of measurement? The volume of water in a bucket? What would be the units of measurement? Why do we avoid describing our observations with words such as 'big', 'small', 'hot' or 'cold' in our laboratory reports? ## **Designing Good Experiments** A good experiment measures one thing at a time. We set up two situations which are exactly the same except for one thing (often called the independent variable), and measure the effect that single difference has on our experimental set up. A good experiment also needs to measure accurately (i.e., close to a known standard); measuring length using the distance from your nose to your ear is not an accurate measurement. Lastly, good experiments usually take multiple measurements so they can determine their precision (i.e., the closeness of two measurements to one another). This is because sometimes there are random errors in measurements, but if we take multiple measurements, we'll know if our results agree. Designing your experiment before you start measuring is very important to be sure you are getting good data that will answer your question. ## **Using Data – Student Activity** Example: Students wanted to find out whether a wet towel would dry more quickly outside or inside. Each group chose two dishtowels of the same size and the same material and then wet both. With a thermometer, they measured the temperature outside in full sun $(32^{\circ}C)$ and inside the classroom $(18^{\circ}C)$. They hung one towel up outside in the full sun and the blowing wind, and the other inside the classroom. Then they measured the time it took for each towel to dry. Their results are in the table below. | Group | Towel outside | Towel inside | |-------|---------------|---------------| | | (Time to dry) | (Time to dry) | | 1 | 23 minutes | 36 minutes | | 2 | 23.5 minutes | 35 minutes | | 3 | 23 minutes | 34.5 minutes | | 4 | 23 minutes | 35 minutes | Was this a good experimental design? Why or why not? Can we consider the information in the table above to represent good scientific data? The students then corrected the mistakes in the design of the experiment and obtained the following accurate and precise data. | Group | Towel outside | Towel inside | |-------|---------------|---------------| | | (Time to dry) | (Time to dry) | | 1 | 21.53minutes | 35.62 minutes | | 2 | 23.50 minutes | 35.78 minutes | | 3 | 23.34 minutes | 34.50 minutes | | 4 | 23.00 minutes | 35.15 minutes | How much longer does it take for a towel to dry inside?