Geological Mapping Exercise 3

The width of an outcrop is determined by:

- the true thickness of the stratum (formation),
- the angle and direction of dip of the stratum, and
- the slope of the land surface where the outcrop occurs.

1. Refer to the diagrams and answer questions $a-d$.

Note: Each diagram uses a scale of $1 \mathrm{~cm}=2 \mathrm{~m}, \mathrm{~T}$ is thickness of stratum, LS is land surface and Cn is width of outcrop.

For each diagram measure the width of the two outcrops (in metres) and give a reason for the difference. Write your answers in the spaces provided below.

$\mathrm{T}=$
C1 =
$C 2=$

Reason for difference
b)

C3 =
C4 =

Reason for difference

Geological Mapping Exercise 3

c)

$\mathrm{T}=$
C5 =
C6 =

Reason for difference

$\mathrm{T}=$
$C 7=$
$\mathrm{C} 8=$

Reason for difference

Geological Mapping Exercise 3

Problem Set 2

Note: Each diagram uses a scale of $1 \mathrm{~cm}=2 \mathrm{~m}, \mathrm{~T}$ is thickness of stratum, LS is land surface and Cn is width of outcrop.

1 For each diagram measure the width of the two outcrops (in metres) and give a reason for the difference or similarity.
a)

$\mathrm{T}=$
CI =
$C 2=$

Reason for difference
b)

T =
CB =
CA =

Reason for difference

Geological Mapping Exercise 3

c)

$$
T=
$$

C5 =
C6 =

Reason for difference
2. For 1b) draw in the space provided below a plan map to show what the two outcrops would look like on a land surface.

Geological Mapping Exercise 3

3. A rock stratum with a thickness of 2 metres forms an asymmetrical syncline. The two limbs dip at 20 and 40 degrees respectively.
The stratum outcrops at two places on a level land surface. The distance between the centre of the two outcrops is 16 metres.
a) Draw a cross section to show the syncline (Use a scale of $1 \mathrm{~cm}=2 \mathrm{~m}$)
b) Measure the width of the two outcrops (in metres)

