For the Year 8 WASP Package

THE ROCK CYCLE

Australian Curriculum

An initiative supported by Woodside and ESWA

Sedimentary, igneous and metamorphic rocks contain minerals and are formed by processes that occur within Earth over a variety of timescales (ACSSU153)

Elaborations

representing the stages in the formation of igneous, metamorphic and sedimentary rocks, including indications of timescales involved

identifying a range of common rock types using a key based on observable physical and chemical properties recognising that rocks are a collection of different minerals

considering the role of forces and energy in the formation of different types of rocks and minerals

recognising that some rocks and minerals, such as ores, provide valuable resources

The Rock Cycle

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

The ROCK CYCLE demonstrates the sequence of processes leading to the formation of different rock types

ROCKS & MINERALS

Weathering creates *clasts*

An initiative supported by Woodside and ESWA

Clasts are broken bits of rock

Chemical weathering of limestone NB: Clasts do not move away from parent rock.

Weathering creates *clasts*

An initiative supported by Woodside and ESWA

Clasts are broken bits of rock

Physical weathering of Banded Iron Formation Frost shattering NB: Clasts do not move away from parent rock.

Weathering creates *clasts*

An initiative supported by Woodside and ESWA

Clasts are broken bits of rock

Biological weathering

Root wedging

NB: Clasts do not move away from parent rock

Weathering creates *clasts*

An initiative supported by Woodside and ESWA

Chemical weathering dissolves rock

Vertical solution channels in Tamala Limestone

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

Erosion by fresh water

An initiative supported by Woodside and ESWA

Erosion by wind

Erosion and clast shape

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

The further clasts move the rounder they become

Doubly weathered and eroded Devonian pebbles

An initiative supported by Woodside and ESWA

With increasing distance from source rock

1. clast size decreases

2. clast roundness increases

Decrease in water flow means decrease in clast size

An initiative supported by Woodside and ESWA

Graded bedding = clast size decreases upwards.

Artificial river valley

An initiative supported by Woodside and ESWA

Flume tube

ROCKS & MINERALS

Compaction & Cementation

An initiative supported by Woodside and ESWA

Sediment becomes rock

Sedimentary rocks (clastic)

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

Breccia

Angular unsorted large clasts in a mixed matrix Scree from cliffs and hills Clastic

Scree in Karijini

Breccia at Tom Price

Sedimentary rock (clastic)

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

Conglomerate

Rounded large clasts in a mixed matrix Rivers and lakes Clastic

Water rounded pebbles Scotland

Conglomerate Mt Russell E of Wiluna

Sedimentary rock (clastic)

An initiative supported by Woodside and ESWA

Sandstone

Well sorted medium grain sands Bedding obvious Clastic

Sand dunes behind Rockingham

Donnybrook sandstone

Mock rocks

An initiative supported by Woodside and ESWA

NB: Not compacted!

Sedimentary rock (clastic)

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

Mudstone

Fine grained Marine, lacustrine, swamp Clastic

Sedimentary rocks (biogenic)

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

Limestone

Chemical or biogenic

Sedimentary rocks (biogenic)

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

Spongelite

Biogenic

ROCKS & MINERALS

Sedimentary rocks (biogenic)

Melting and crystallisation create igneous rock

Igneous rocks

An initiative supported by Woodside and ESWA

1. Extrusive or intrusive - *Where did they crystallise*?

2. Felsic or mafic - *Silica rich or silica poor?*

Igneous rocks

	Mafic	Intermediate	Felsic
Volcanic Extrusive (very small crystals)	Basalt Obsidian Pumice	Andesite	Rhyolite Obsidian Pumice
Intermediate (eye/magnify)	Dolerite	Х	Х
Plutonic Intrusive (Large crystals)	Gabbro	Diorite	Granite
Lighter in colour			

Felsic igneous rocks

An initiative supported by Woodside and ESWA

ROCKS &

Australian Governm Goscience Australia

Obsidian

Pumice

Granite

Mafic igneous rocks - Dolerite dykes

Mafic igneous rocks

ROCKS & MINERALS

Metamorphic rocks - Partial melting

Metamorphic rocks - Partial melting

ROCKS & MINERALS

An initiative supported by Woodside and ESWA

Limestone changes to marble. Traces of fossils remain

ROCKS & MINERALS

Metamorphic rocks - Partial melting

An initiative supported by Woodside and ESWA

Sandstone changes to quartzite (Toodyay stone).

Metamorphic rocks - Partial melting

An initiative supported by Woodside and ESWA

Mudstone changes to slate and then schist

Metamorphic rocks - Partial melting

An initiative supported by Woodside and ESWA

Dolerite dyke through granite

to Gneiss

Uplift due to tectonic movement

Uplift

This presentation can be freely downloaded from <u>www.wasp.edu.au</u> under Year 8 Resources – Rock Cycle. Further resources can also be found here.